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Far-red photography for measuring plant
growth: a novel approach
Cole Webb, F. Mitchell Westmoreland, Bruce Bugbee, Xiaojun Qi

Abstract
A critical part of agricultural studies is determining plant stress and growth rate. Modern
computer vision provides a series of tools that can be applied to derive this data. In this paper,
we will show our findings, analyze their accuracy, and define a system capable of deriving this
data with near-human accuracy in a fraction of the time. Denoising techniques applicable to this
system will be discussed, as will our discoveries and findings. Finally, suggestions for further
research opportunities will be provided.

Overview
This lab has done initial work in using color imagery to separate plants from their backgrounds
(Klassen et al., 2003, 3-14). This has worked in the past (Zhen & Bugbee, 2020) because plants
are frequently grown in white surroundings, and software can fairly simply distinguish between
white and green.

This work has included several methods, including using manual methods to segment the
images and using custom software to segment color images (Johnson, 2019). These methods
all have downsides, which this system aims to reduce or eliminate.

This system, however, only works well when plants are photographed under light that accurately
reflects colors. Using various colors of light is common in Cannabis agriculture (Westmoreland
et al., 2021), and therefore color accurate lighting for photography is not guaranteed.

The system described herein sidesteps this entire problem by focusing on using infrared and
far-red light instead of the visible spectrum. This comes with the added advantage of high
reflectance from healthy plant tissue in this spectrum, which greatly simplifies the software
needed to gain high-quality results. As we will explore, this spectrum is present in trace amounts
even in lights with only cool white LEDs, and those trace amounts are more than sufficient for
this system to work effectively.

Methods
The vast majority of this data is gathered from images taken in a standard growth chamber. This
chamber is aluminum on the inside, with a plastic grate in the bottom, and is lit from above by a
pair of BIOS ICARUS Vi 321-TUXJ-00007 cool white panels. It measures 1.25m wide by 0.9m
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deep by 1.02 m tall. Despite containing very little far-red light, there is enough for our purposes
(as our results will show).

Figure 1. overlap of cool white LEDs and transmission of filter

We also did some work in a smaller chamber (0.44m wide by 0.59m deep by 1.00m tall) with
less useful optical properties. This chamber was highly reflective on the inside, and the results
from it were interesting but not as accurate.

The larger chamber was covered on the bottom with a sheet of black plastic, which provides a
clean background to work with during the analytical process. In some studies, the plastic was
augmented with a pair of crosses made of high-visibility tape. This was done to assist in lining
up images taken at the same time, a process that was not pursued.

The images were taken with either a Raspberry Pi Camera Module V2, for the color images, or
a Raspberry Pi NoIR Camera Module V2, for the IR images. In the case of the IR images, we
placed a Schott RG9 filter in front of the lens, limiting the camera to only far-red and IR light.
The camera was hooked up to a Raspberry Pi 4, which was responsible for timing the
photographs and uploading them to USU’s cloud storage. This was accomplished with a
combination of Linux utilities and custom software.

We found that the most critical optical condition, besides having sufficient light, is contrast in
brightness between the plant and its surroundings. The larger chamber, with its aluminum walls,
had this property. The smaller chamber, with its painted white and highly reflective walls, did not.

Figure 2 depicts a sample infrared image. This image was taken in the larger chamber.
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Figure 2. a sample infrared image, taken from above the plant with imaging targets

From here, the images were downloaded from cloud storage and run through the custom
analytical engine. This engine contains options for a variety of denoising methods. We found the
strongest correlation to time, and obtained the cleanest images, using a combination of Otsu’s
Binarization (Otsu) and connected component cleanup.

Otsu’s Binarization looks at the histogram of a grayscale image and attempts to find a point
between the two largest peaks. Anything darker than that point becomes black, anything
brighter becomes white, and a grayscale image is converted to solely black and white. This
algorithm has become a common tool for separating background and foreground in grayscale
images, and is the default tool for image binarization in the popular scientific mathematics
platform MATLAB (MathWorks, n.d.) and was therefore a natural choice for this project.

Connected component cleanup relies on the concept of connected components. A pixel is part
of a connected component if it is directly or diagonally adjacent to another pixel or group of
pixels of the same color. Using connected component analysis on a binary image, we can
determine which pixels are in which connected components. From here, it is fairly simple to
assume that the plant in the picture is the largest connected component, and delete the rest of
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the connected components. We can also extend this, selecting the x largest connected
components and keeping them, where x is the number of plants in the picture.

We also tried using morphological cleanup. Morphological cleanup, in this case, used two
operations: an erosion operation and a dilation operation. The erosion operation shrinks the size
of any object in a binary image, and the dilation image expands any object in a binary image. By
combining these two operations, we get an operation called “binary closing”, which removes salt
and pepper noise and thin, long extensions. While it makes large objects look blockier, it does
so consistently, and therefore doesn’t affect results. While this method may be useful for other
datasets, it caused minimal improvement in accuracy for this dataset.

Combining Otsu’s binarization and connected component cleanup gives us results that, under
good optical conditions, are comparable to human results and significantly faster.

Finally, we counted the number of white pixels in the image and recorded them in a spreadsheet
file for further analysis and plotting and saved the analyzed images for visual inspection.

Images taken while the lights were off during the night were detected by taking the mean of the
grayscale image and rejecting the image from analysis if the mean was under a threshold value.
We achieved 100% accuracy in this dataset using the threshold mean value of 20 (on a scale
from 0 to 255).

On our test machine, analyzing a month’s worth of data took approximately 37.8 seconds. This
machine consists of an 11th generation Intel i7, with 8 cores boosted to 5.5 GHz, along with a
NVIDIA RTX 2070 Super. This time was achieved using a multithreaded version of the
processing algorithm. The processing algorithm is processor bound, and could be further
optimized by tapping into the graphics card better.

Results
Our test dataset consists of 850 images taken of a single plant over the course of 35 days. We
ran the dataset through the analytical engine a total of four times, using the following settings,
and calculated R2 values to check for correlation with time.

R2 was calculated with respect to a sigmoidal logistic curve with 4 parameters. This curve
closely matches the expected behavior of a plant growth curve, with a relatively flat beginning, a
period of rapid growth, and an asymptotic ending. The 4 parameters were selected by
SigmaPlot for closeness of fit. Time was the independent variable, and pixel count was the
dependent variable.
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Run number Otsu’s
Binarization?

Connected
component
cleanup?

Morphological
cleanup?

R2

1 Yes No No 0.4192

2 Yes Yes No 0.4980

3 Yes No Yes 0.4519

4 Yes Yes Yes 0.4991

Table 1. Summary of test runs and correlations

As we can see from Table 1, the combination of Otsu’s Binarization and both denoising
techniques provides the best R2 value. However, the difference between using both denoising
systems and using just connected component cleanup is negligible, and using morphological
cleanup produces a blocky image that doesn’t map cleanly to the original image. It should be
noted that these R2 values are artificially low, due to a lack of recorded data during the plant’s
night cycle. The data points from the night cycle were set to zero by convention.

We also used a set of measures from computer vision to measure accuracy: True Positive
Value, False Positive Ratio, Jaccard’s Index, Dice’s Coefficient, and Area Error Ratio. These five
measures compare the analyzed images to ground truth images, which were in this case
created by manually correcting the analyzed images. We sampled images from the dataset 24
hours apart for this process.

Measure Condition Perfect Value Mean Value

True Positive Ratio Higher is better 1 0.9808

False Positive Ratio Lower is better 0 0.001189

Jaccard’s Index Higher is better 1 0.9786

Dice’s Coefficient Higher is better 1 0.9839

Area Error Ratio Lower is better 0 0.07124

Table 2. Summary of computer vision statistics

5



Figure 3. Box plots of computer vision statistics

Figure 3 shows whisker plots of the five computer vision statistics. Note that the scales vary.
These plots show that the statistics are closely clustered around the perfect values, with several
outliers.

As we can see from the above statistics and whisker plots, this algorithm performs very well.
The False Positive Ratio accurately reflects that the majority of the corrections necessary added
pixels to the correct images, instead of removing pixels. With the exception of an outlier, the
Area Error Ratio reflects high accuracy as well.

Finally, we plotted the data output from this system. Its plot is in Figure 4, which also includes
markers of waterings. Water stress accounts for a lot of the dips in the data, and it accurately
reflects when the plant began to wilt.
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Figure 4. Output plot, including interpolated data and watering markers

The above data shows an exponential growth curve, as expected, with some considerable dips
correlated to gaps in watering. The plant involved here has a circadian rhythm, which we see
here as well; the plant contracts at the end of the day and is back to its usual shape by morning.
Overall, the data is as expected. The system accurately detected water stress at approximately
hours 510, 650, and 820. It also accurately measured the plant as it rehydrated after being
watered.

This system doesn’t collect data during the night, which means that we linearly extrapolated
data from the night cycle. The interpolated data is marked in red on the graph above, and the
recorded data from the system is marked in blue.

Figure 5. Images from a standard workflow. Original left, thresholded center, cleaned up right.
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Limitations
This particular setup, with a camera at the top of the chamber looking down, only works well for
plants that grow out as well as up. Grain crops, such as wheat, soybeans and corn, are not
expected to work well in this system.

Further, this system relies on being able to separate a plant from its background. In order to do
this, the background must be at least partially visible for the duration of the study.

This algorithm also requires that the chamber reflect less light, at least from the point of view of
the camera, than the plant itself. In the smaller chamber mentioned, this was not the case; the
walls of the chamber reflected almost exactly as much light as the plant, leading to the algorithm
not being able to tell the difference between the plant and the walls.

Further research
The next logical step is to use this system in tandem with other ways of measuring a plant’s
growth rate, such as its weight or carbon dioxide consumption, and see if there is a correlation
between the two figures.

Another option for exploration is building a mobile imaging system. Such an imaging system
would ensure proper lighting and optical conditions for the algorithm, and make upgrades to the
system simpler. It would also negate the need for in situ monitoring solutions and standardize
results.

An unexpected vector for further research is an odd phenomenon we encountered while testing
the system under less ideal conditions. While testing the system in the smaller chamber, for a
few seconds after the lights came on in the morning, the plant appeared significantly brighter
than the walls of the chamber. We have conjectured that this is chlorophyll fluorescence, but
have not confirmed it. This effect gave us the contrast necessary to segment the image
accurately, resulting in one clean data point per day. Previously, almost all data from this
chamber had been unusable.

Finally, more accurate data could be gathered by using depth sensing hardware and software.
This includes systems such as stereoscopy and time of flight sensors, which would enable us to
calculate the volume of the plant instead of the area.

Conclusion
In this paper, we have shown an algorithm, combining Otsu’s Binarization and connected
component cleanup,  that is capable of distinguishing between a plant and its surroundings. This
system can also do so much faster than a human performing the same operation.
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Our testbed machine ran this algorithm on the dataset in 37.8 seconds, analyzing 850 images.
A human performing the same task, working fairly quickly at 5 minutes per image, would have
taken over 70 hours to complete the same task. This algorithm presents a 6,746 fold
improvement on the current method and as such, we believe it bears further research.

Thanks
The authors express their thanks to the entire staff of the Utah State University Crop Physiology
Laboratory for their invaluable contributions to this project. Special thanks go to Brendan
Fatzinger, Julie Hershkowitz, and Alec Hay.

Supplemental Material
The code for this project, in addition to Jupyter notebooks that were instrumental to the
development, testing and analysis of this algorithm, can be viewed and downloaded from
https://github.com/colewebb/gpea.

The data from this project, comprised of image data from 15 studies, can be viewed and
downloaded from https://usu.box.com/s/p1azqtuhvod9wu4wgg8p3yi2hzn806v1.
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